Virtual Engines

Designed into these learning stories:


Simulations can be used for a wide range of topics and goals: science, history, business etc. They can recreate authentic conditions in which learners can experiment with decision making, problem solving or where they can try out daring and unlikely ideas in a safe environment. Engineering simulations are particularly popular as software physics engines have advanced to a level where they can simulate real-life dynamics with unprecedented accuracy. This makes them great learning tools in Maths, Science and Technology (MST).

I am a Design and Technology teacher who is just beginning to find out about the opportunities of simulations, and after a period of research and planning I finally decide to take the plunge and try this approach in my classroom. The main resource is a simulation software that can run on individual laptops, as well as on the interactive whiteboard, which in fact offers a new level of interaction thanks to its touch-based interface. Students can shift parts of a virtual prototype across the screen and see the results in real time.

The goal of the project is to build a rocket-propelled racing car. The project starts with lessons about basic content knowledge. The lessons are not didactic but structured like discussions, in which the presentation of content is always supported by active questioning and by a measured use of digital media (e.g. videos and physics games) to illustrate basic principles of rocket-science, engineering and physics.

The remainder on the project requires a degree of exploration and experimentation; during this phase I draw on the principles of enquiry-based learning to support the process. The main aim is to build a virtual prototype that behaves realistically, and does not take off when picking up speed!

During the interaction with the software, I make sure that the simulation does not end up simplifying complex dynamics; therefore I plan several de-briefing sessions in which we reflect on the process and question the underlying assumptions of the software. My ultimate aim is for students to walk away from this project with an accurate understanding of the physics or the mathematics involved.

An important part of the project is the collaborative development of an evaluation rubric to assess the prototypes.  The project ends with a public display of the prototypes on the interactive whiteboard, and all prototypes are assessed collaboratively against the criteria outlined in the rubric. Eventually, a number of videos showing different phases of the project and the rocket-propelled cars in action are created and uploaded to YouTube.

VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

This post is also available in: Turkish

One Response to Virtual Engines

  1. Adil Tugyan says:

    Simulation is a great idea for both designing a new device and teaching some subjects.As ı am an English teacher I can use this technique in classes working on Passive voice,The city where I work in Turkey is famous with tea planting So I can assign my students to simulate tea plant processing in factories. All its stages can be simulated and recorded by the students as an final outcome to present in the class.

    VA:F [1.9.22_1171]
    Rating: 0 (from 0 votes)

Leave a Reply

Your email address will not be published. Required fields are marked *